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The physics-based single particle (SP) model was compared to the semi-empirical equivalent circuit
analog (ECA) model to predict the cell voltage under constant current charge and discharge for different
sets of Li-ion cell data. The parameters of the models were estimated for each set of data using nonlinear
least squares regression. In order to enhance the probability of finding the global optima, a combination
of the trust region method with a genetic algorithm was applied to minimize the objective function (the
sum of squared residuals). Several statistical quantities such as sum of the squared errors, adjusted R?,
root mean squared error, confidence intervals of the parameters, and prediction bounds were included
to compare the models. A significance test (t test) on the parameters and the analysis of the variances (F
and x? tests) were also performed to discriminate between the goodness of the fit obtained from the two
models. The statistical results indicate that the SP model superiorly predicts all sets of data compared to
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the ECA model, while the computation times of both models are on the same order of magnitude.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Today several models for Li-ion cells are available. Most of these
models are generally categorized into two main groups, physics-
based and empirical. Physics-based models consider the physical
phenomena which occur in batteries including the material and
charge transfer processes, ionic conduction, solid phase diffusion,
etc. Most of these models are sophisticated in nature and time con-
suming to solve [1-5]. However, some efforts have been made to
simplify the complexity of the physics-based models and reduce
the computation time. For example the active material concentra-
tion within the solid phase can be approximated by the second
degree polynomial [6-8]. Another simplification can be obtained
by using the SP model that represents each electrode as a single
spherical particle and ignores the solution phase concentration and
potential [9,10]. S. Santhanagopalan et al. compared the two differ-
ent physics based models; the SP and the rigorous porous electrode
models [11]. The parameters of each model were estimated and the
statistical F-test was performed to discriminate between the mod-
els. A review of the physics-based models comprising the rigorous
pseudo two dimensional (P2D), the SP and the porous electrode
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models with the polynomial approximation, was presented by S.
Santhanagopalan et al. [12]. The second group of the models for Li-
ion cell simulation is empirical or semi-empirical at best [13-15].
The majority of these models rely on the capacitor/resistor net-
works that are generally simple and describe the physical processes
as being capacitive or resistive in nature. The original simplified cir-
cuit was adopted from Ong and Newman [16] by incorporating the
double-layer capacitance into the model. M.W. Verbrugge and R.S.
Conell implemented an equivalent circuit model for electrochemi-
cal and thermal characterization of a nickel metal hydride traction
battery [17]. Model parameters were estimated by comparing the
average cell voltage and the temperature for different charge and
discharge rates. There have been some works that applied the cir-
cuit analog approach for lead acid, nickel metal hydride, Li-ion
batteries and activated-carbon capacitors in adaptive manner to
predict the state of charge (SOC), state of health (SOH) and power
capability [18-20]. L. Gao et al. developed a model for Li-ion bat-
teries that relies on an equivalent circuit accounting for rate and
temperature dependence of the capacity, thermal dependence of
the equilibrium potential and transient response [21]. Although use
of manufacturers’ data allows the ECA model to have good accuracy,
it deviates from the experimental data at low temperature and at
high discharge rates. A realistic simulation of a lithium battery pack
was performed by M. Dubarry et al. [22] using an equivalent cir-
cuit approach for modeling of each single cell’s performance. They
showed that an accurate battery pack simulation can be achieved,
if the cell-to-cell variations were taken into account. More details
about the ECA model can be found in AJ. Bard and L.R. Faulkner
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Nomenclature

Qi
AR?
C
(@]
Ce

Ci,max

dof

I app

Xiavg
Xi surf

Xi ,avg,ch

diagonal elements of the matrix A defined in Eq. (25)
adjusted R-square

capacitance [F]

confidence intervals of the parameters

electrolyte concentration [molm~3]

maximum solid phase concentration for each elec-
trode (i=p,n) [molm—3]

degree of freedom

solid phase diffusion coefficient of Li* or each elec-
trode(i=p,n) [m%s1]

the inverse of the F cumulative distribution function
Faraday’s constant [Cmol~1]

null hypothesis

alternative hypothesis

applied current [Cs~1]

Jacobian matrix

current density at the surface of the spherical parti-
cle for each particle in electrode (i=p,n) [Am~2]
rate constant for each electrode (i=p,n)
[mz.s mol-9> S—l]

a large number

normalized confidence intervals of the parameters
number of data points for each dependent variable
J

number of points of independent variable

number of parameters

total number of data points

columbic capacity of the cell [Ah]

prediction bounds for the fitted curves

cell resistance [€2]

R-squared

interfacial charge transfer resistance [2]

gas constant [Jmol~1 K-1]

radius particle for each electrode (i=p,n) [m]
elements of the correlation coefficient matrix

root mean squared error

approximated value for the variance

electroactive surface area for each electrode (i=p,n)
[m?]

state of charge for each electrode (i=p,n)

cell state of charge

initial state of charge for charge

initial state of charge for discharge

sum of the absolute residuals between the predic-
tion bound and the fitted model

sum of squared errors

total sum of squares

time [s]

temperature [K]

open circuit potentials for each electrode (i=p,n) [V]
variance of parameter b;

cell voltage [V]

electrode volume [m3]

open circuit potentials for the cell [V]

number of dependent variables

predictor value defined in Eq. (31)

ratio of the solid average concentration to the maxi-
mum solid concentration for each electrode (i=p,n)
ratio of the solid surface concentration to the maxi-
mum solid concentration for each electrode (i=p,n)
initial dimensionless average concentration for
charge for each electrode (i=p,n)

xgavg’dch initial dimensionless average concentration for dis-
charge for each

y model prediction

y observed data

y mean value of the fitted responses

g cathodic transfer coefficient

Qcj anodic transfer coefficient

Bi true value of the parameter

ni overpotentials for the lithium ion intercalation reac-
tion for each electrode (i=p,n) [V]

i potential reaction for each electrode (i=p,n) [V]

& active material volume fraction in the electrode
(i=p,n)

r gamma function

[23] and M.W. Verbrugge [24] books. None of the above works
have compared the physics-based models to the empirical or semi-
empirical models to investigate which models more accurately
predict experimental data. In this paper, a comparison of the SP
model [12] as a physics based approach and a simple ECA model
[15] as a semi-empirical model was implemented by predicting
the charge and discharge voltages at different rates for three sets of
data. The nonlinear least squares method was applied to estimate
the parameters of the models by using the Matlab® Curve Fitting
and Global Optimization toolboxes [23]. Several statistical quanti-
ties and tests are presented in order to discriminate between the
SP and ECA models.

2. Single particle model

A schematic of a lithium-ion cell represented by the SP model is
depicted in Fig. 1 with an individual spherical particle representing
each electrode as the current being passed through the electrode is
distributed uniformly over all of the particles in the electrode. The
main assumptions of the model are as follows [12]:

(1) The concentration of the electrolyte is constant and uniform for
all time across the cell sandwich (cathode, separator, anode).

(2) The potential in the solution phase is constant and uniform for
all time across the cell.

(3) Positive and negative electrode potentials depend on time only.

(4) There is no side reaction in the cell.

Carbon

_________ Jreees

Separator
Diffusion of lithium
- e chage . charge " _
Li"+C+e” g2 LiC LiCo0; & CoO,+Li’+e
discharge discharge

Fig. 1. A schematic of a lithium-ion cell represented by the SP model [11].
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By applying a volume average technique, Fick’s second law (par-
tial differential equation), is simplified to predict the lithium ions
concentration in a spherical particle. This form contains an ordi-
nary differential equation and algebraic constraint equation (DAE)
with the variables x; 4,y and x; ;¢ (i=p,n) for each of the electrodes
together with their initial conditions as follows:

dxi,avg _ i W
dt FRiCi max
—JiR;
Xi,surf — Xi,avg = m .
I
Ji=-2& .

Si

where X; 4, is the ratio of the solid average concentration to the
maximum solid concentration for each electrode (¢jmax), Xisurf IS
the ratio of the solid surface concentration to the maximum solid
concentration which is equal to the state of charge (SOC;) for each
electrode.

The Butler-Volmer kinetic expression is used to predict the rates
of the lithium ion deintercalation and intercalation reactions for
each electrode:

Ji 0.5 0.5 Aq,iF
== ki(ci,max - Xi,surfci,max) (Xi,surfci,max) Cg's exp &t ni
F ReT

The overpotentials for the lithium ion intercalation reaction are:

ni=¢i - U (5)
The cell voltage is obtained by Eq. (6):

Veen = ¢p - ¢n (6)

Since the charge and discharge data were obtained at con-
stant current, the model does not include the side reaction,
and the cathodic and anodic transfer coefficients are the same
(otgi=0ac;=a=0.5), the system of differential algebraic equations
(DAEs) for the SP model can be solved analytically. The analytic
solution of the differential equation for the average concentration
is as follows:

it—i—xo (7)

X; = :
Y8 RiFcma 08

Surface concentration is obtained:

oy JiRi
Lsurf = hav SFDS iCi, max

(8)

There are two analytic solutions for the overpotential from the
Butler-Volmer equation:

0.5
ReT | (J,- +(—AceF2c? | KPX? + ACeF?c? | k2Xi surp +J7) )

Ni=—4—
Fo ZFCgSki(Ci,maxxi,surf )O.S(Ci,max — Ci, maxXi, surf )0.5
(9)

where only the positive sign yields the real value (physically mean-
ingful). Finally, the electrode potentials can be evaluated by adding
the open circuit potentials to the overpotential obtained by Eq. (9):

&1 = 0i + U (% suf) (10)

The following 10 parameters of the SP model were selected to
fit the data:

b= {Ds,ru Dsp, Sn, Sp, kn, kp» X

0 0 0 0
n,avg,ch’ Xn,avg,dch ’ Xp,avg,ch’ xp,avg,dch}
(11)

The values of the other parameters of the SP model for different
cells are given in Table 1.

3. Equivalent circuit analog model

Fig. 2 shows the schematic for an equivalent circuit that repre-
sents the Li-ion cell [24].

The single equation which relates the cell current and the volt-
age takes the following form:

dlagpp 1 R d(Veey — Vo) 1

Rar *c (1+E)I”PP_T+H(
The detailed derivation is provided in [17]. Since the charge and

discharge data were obtained at constant current, the differential

equation for the voltage can be written as:

d(vcell - Vo) _ 1 ( R

1
a =Cc 1+Rjt)lﬂpp—ﬁ(vcen—Vo) (13)

where V, (open circuit potential) is a function of the state of charge
for the cell (SOCcey).

The solution to the first order differential equation (Eq. (13)) was
givenin [17]:

Vcell - VO) (12)

_ Q —t —t
Veen = Vo + IR+ r exp (&7) + IappRet (1 — exp (Rctc>) (14)

The SOC,,; is changed with time as follows:

I
SOCcell = SOCO.cell + %t (15)

where SOCy (. is the initial SOC for the cell. Note that the current
is positive while charging the cell and negative when the cell is
discharged. The open circuit potential, V,, for the cell is calculated
as the difference of the open circuit potentials for the electrodes:

Vo = U (SOGp) — Uf (SOCy) (16)

In order to evaluate the open circuit potentials for the elec-
trodes, the state of charge of the cell must be correlated to the SOC
of each electrode. The values of electrode SOCs are known at the
fully charged state, i.e. SOC.;; = 1.0, and the fully discharged state,
i.e. SOC, = 0.0. Thus, the SOC for each electrode at a particular cell
SOC can be determined by using a linear interpolation.

The following 6 parameters of the ECA model were considered
to be estimated to fit the data:

b= {C, Q, R, Ret, socg{;e,,, socgffeu}

h d h . .. .
where SOCche”, SOCOfce” are the initial cell SOC for charge and dis-

charge, respectively.
4. Parameter estimation

Matlab® Curve Fitting and Global Optimization toolboxes [25]
were used to estimate the parameters of the SP and the ECA models
using the nonlinear least squares method. To compare the models
statistically, the following are presented for each model:

e Sum of squares due to error (SSE)

e R-square (R?), adjusted R-square (AR?), root mean squared error
(RMSE), confidence intervals of the Parameters (CI)

e Normalized confidence intervals of the parameters (NCI)

e Prediction bounds for the fitted curves (PBs)

e Sum of the absolute residuals between the prediction bound and
the fitted model (SPB)

Also the statistical t-test was performed to show the significance
of the parameters of the models and in order to test the adequacy
of the models, the F-test and the x2-test are presented.
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Table 1
SP model constant parameters in parameter estimation for different cells.

Parameters UsG Quallion P2D

Value Unit Value Unit Value Unit

Cpmax 51,555 molm—3 50,991 molm—3 51,555 molm—3

Crmax 30,555 molm—3 30,555 molm—3 30,555 molm—3

Ce 1000 molm—3 1000 molm—3 1000 molm—3

Ry le-5 m 5e-6 m 8.5e—6 m

Ry 2.5e-5 m 1.25e-5 m 12.5e-5 m

g 0.5 - 0.5 - 0.5 -

i 0.5 - 0.5 - 0.5 -

T 298.15 K 298.15 K 298.15 K

R 8.3143 Jmol-1 K1 8.3143 Jmol-1 K1 8.3143 Jmol-1 K1

F 96,487 Cmol! 96,487 Cmol™! 96,487 Cmol!

5. Nonlinear least squares

Because the SP and the ECA models are nonlinear in their param-
eters, the nonlinear least squares method was applied to minimize
the SSE between the experiments and the model given by [26]:

where vand n; are the number of dependent variables and the num-
ber of data points for each variable, respectively; and y:; yjj are
the observed response and the fitted response values, respectively.
The objective function, SSE, is minimized using the trust region
method (Curve Fitting toolbox) and the genetic algorithm (Global
Optimization toolbox) in the following procedure:

v 1
2
SSE = Zz(y;} ~Yij) (17) 1. Initial guess, lower and upper bounds for the parameters are
J=1 i=1 selected.
— Anode porous electrode Separator Cathode porous electrode  +

Solid
phase
resistance

lgi:clrfizﬂal Interfacial

. capacitance

resistance
Pore Separator
electrolyte electrolyte
resistance resistance

Fig. 2. Equivalent circuit for correlating the lithium-ion cell behavior [24].
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2. The trust region method tries to minimize the objective func-
tion using the initial guess. Note that the Levenberg-Marquardt
method does not handle the bound constraints.

3. The resulting point from Step 2 is considered as one of the chil-
dren of the initial population in the genetic algorithm while the
other children are generated randomly in the feasible domain for
the parameters. Afterward, the genetic tried to find the param-
eters with less SSE.

4. If the objective function is improved in Step 3 by a defined tol-
erance (&mp = 10-6), the optimal parameters obtained in Step 3
are picked as the initial guess for Step 2; otherwise terminate
the minimization algorithm and print the results.

R? is expressed as [27]:

SSE
RP=1- ST (18)
where SST, the total sum of squares, is defined as [27]:
nr 2
SST=Z (v; -¥) (19)
i=1

where nr and y are total number of data points and the mean
value of the fitted responses, respectively. Note that because all
the dependent variables are cell voltages, we define a unique R? for
all the curves. Since the number of parameters for the SP and the
ECA are different, the AR? and the RMSE are also presented in this
work as follows [27]:

- (nr —1)SSE
AR _1_(dof—l)SST (20)
RMSE = % (21)
dof =np —np (22)

where dof and np are the degree of freedom and the number of
parameters, respectively.

The 95% confidence interval for the parameter b; is constructed
as [26]:

Cl; = :|:f(1_0405/2)5w / Qji (23)

where £(;_¢5/2) is a value of Student’s t-distribution with dof

degrees of freedom and 95% confidence, and s2, approximated value
for the variance, is given by [26]:

, SSE
§4 = ——
dof

a;; in Eq. (23) are the diagonal elements of the following matrix
[26]:

(24)

-1
A= >0 (25)
j=1

where ] is the Jacobian matrix defined at each point as follows:

3SSE
J= ab;

The elements of the correlation coefficient matrix are calculated
by Eq.(27) to show how the parameters of the models are correlated
[26]:

_— COU(b,‘, bj) (27)

Y Vb)V(by)

(26)

where Cov(b;, b;), V(b;) are the covariance of b; and b; and the vari-
ance of b; is obtained as follows:

Cou(b;, bj) = sayj
V(by) = s%a; 28)

By substituting Eq. (28) in Eq. (27), the following is obtained:
dij
where aj; is the (ij) element of the matrix A defined in Eq. (25).
The higher the correlation between two parameters, the closer the

absolute value of rj; is to 1.0.
We defined the normalized parameter confidence interval (NCI)

in this paper in order to compare the confidence interval for differ-
ent parameters and also for different models:

£8(1-0.05/2)SV/3ii
b;

NCI; = (30)
The prediction upper and lower bounds (PBUL) for the fitted
curve and for all predictor values (x) are given by [27]:

PBUL = y + fo\/xa;xT (31)

where fis the inverse of the F cumulative distribution function. The
PBs together with the fitted curves for the SP and the ECA models
are presented. However, the sum of the absolute residuals between
the lower bounds (lower or upper bounds results in no difference)
and the fitted model is also calculated to compare the bounds of
the models quantitatively:

SPB = Zu:zj: (PB* — yy) (32)

j=1 i=1
6. t-test

A significant test (t-test) presented in [26] is to test the null
hypothesis that any one of the parameters might be equal to zero.
The null hypothesis can be stated as [26]:

Hp : ﬂ,’ =0
and the alternative hypothesis as
Ha:pi#0

This is true when the parameter appears in the model as the
parameter vanishes if the value is set to zero such as polynomial
coefficients. Thus, when the test verifies the null hypothesis, the
parameter can be removed from the model. However, this is not
the case when the parameter is the root of a denominator or the
root of a natural logarithm, etc. For the former, 8; needs to be a
large number while for the latter §; is one. For example, consider
the following model with two parameters (by, by):

X

b In(by)

y
The null hypothesis can be stated as

Ho:f1=M, f2=1

and the alternative hypothesis as

Ha:B1#M, By #1

where M is a large number. As a result, when the null hypothesis is
accepted, the parameter can be eliminated in the model.
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Table 2
Optimization results for fitting the USG and P2D data using the SP and the ECA models.
USG using the SP model USG using the ECA model P2D using the SP model P2D using the ECA model
Initial guess/method SSE Initial guess/method SSE Initial guess/method SSE Initial guess/method SSE
Initial guess 1060570 Initial guess 295.109 Initial guess 157617 Initial guess 485.126
Trust region 959662 Trust region 2.6536 Trust region 155556 Trust region 0.70651
Genetic 0.6043 Genetic 2.6536 Genetic 0.03437 Genetic 0.61433
Trust region 0.4963 Trust region 0.01351 Trust region 0.61368
Genetic 0.4963 Genetic 0.01351 Genetic 0.61368

The t value is calculated for each parameter using the following
equation:

f_ bi—pi (33)
/@i
If this value lies within the region of acceptance given by the t
distribution at the required confidence interval level, then the null
hypotheses is accepted.

7. F-test

In order to test the adequacy of the fit of the SP and the ECA
models, the F-test was performed [26]. The total sum of residuals
is the sum of the error due to the lack of fit and the experimental
error. The variances of these errors are obtained using the following
equations:

Nnr

> -7y
2 =1
T

Nnr
2 _ i=1
%2 = T dof,

dofy = npr — 1
dof, = ny — npr

where y* is the mean value of each group of repeated experiments,
nyr is the number of points of independent variable (the total non
repeated points), and ny is the total number of points. The ratio of
the variances, s%/s%, has an Fdistribution with dof; and dof, degrees
of freedom. For a good fit, the following inequality must be true:

s
< Fi_q(dofy, dofz)

2 (35)

Table 3
Statistical results for the USG data fitting using the SP model.

F1_q(dof, dof) value can be calculated by solving the following
equation:
Fi_q(dofy dofy)
f(t, dofy,dofy)dt =1 -«
dofy (36)

[((dof; +dof>)[2) (dofi\ 2 t(dofy ~2)[2
I(dof1[2)I(dof2/2) \ dofz [1+ (dofy dofy )t 712772

f(t, dofy, dofz)=

where [ is the gamma function.

8. Chi-squared (x2) test
In order to show the goodness of the fit, the chi-squared (x2)

statistical test is also accomplished [28]. The quantity known as
chi-squared (x2) is calculated as follows:

(/)
2=
i=1 (37)

n*
v =3 -7
j=1
This quantity has a x2 distribution with dof; degrees of freedom
and to have a good fit, the following muse be satisfied:
X < Aoy 1-a (38)

where Xgofl,l—oz is obtained by solving the following equation:

oo

/ FOR)X? =1-a
Xz210f1,1—a (dofy /2)-1 (39)
e 122y e
) =

2dofy 2 (d‘;i)

Parameter 10 Parameter model 8 Parameter model
Value t value Is parameter Value (@] NCI t value Is parameter

significantly affecting significantly affecting
the fitting? the fitting?

Dsp (m?s71) 1.3863e-14  -27691 Yes 1.3862e—14  +4.0258e—15  +0.29042 —48678 Yes

Dsp (m?s71) 9.9984e—11 -19e-6 No - - - - -

Sn (M?) 0.14477 - - 0.14489 +0.021376 +0.14753 - -

Sp (m?) 0.18868 - - 0.18867 +0.0018607 +0.0098621 - -

ko (m%>mol—%s-1)  9.9991e—6 -23e-9 No - - - - -

ky (m?>>mol—°s~1)  4.7568e—12 —2.6e7 Yes 4.7585e—12  +£1.9004e-13  +£0.039937 -1.03e8  Yes

xg_avg_ch 0.11119 7.1139 Yes 0.11136 +0.015185 +0.13636 14.244 Yes

Xg,avg.dch 0.83869 29.497 Yes 0.83814 +0.053812 +0.064204 30.491 Yes

xg_’avg’m 0.99534 6794.1 Yes 0.99534 +0.00014166 +0.00014232 13757 Yes

0 0.5313 171.59 Yes 0.53128 +0.004497 +0.0084645 231.11 Yes

Xp, avg,dch
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9. Results and discussion
9.1. USG Gen 1.0 experimental data

The experimental data consists of the cell voltage, current and
the temperature for several charge/discharge cycles of the lithium-
ion pouch cell. The rated capacity of the cell is 341 mA h. The active
materials of the positive and negative electrodes are lithium cobalt
oxide (LiCoO,) and mesocarbon microbead (MCMB) 2528, respec-
tively. The three first charge curves at 0.2 C-rate and three discharge
curves at different rates, 0.5, 0.686, and 1.029 C-rates were selected
to estimate the parameters of the SP and the ECA models. The anode
and cathode open-circuit potentials as functions of the SOCs are
expressed as [5]:

.0172 + .0019
SOC» " soc}s

+.2808¢(0-9-1550C) _ 7984(0.446550Cq—0.4108)

Un(SOCy) = .7222 + .1387S0C, + .029S0C/2 —

Up(SOCp) =

The initial state of charge of the positive electrode returned
from the parameter estimation routine is larger than expected
(0.99 < xgyavg’ch < 1.0). The large value is likely due to the fact that
the SP model does not take into account the potential drop in the
electrolyte.

Table 3 consists of the parameters’ values, confidence intervals,
normalized confidence intervals, and t values. The same SSE for
the 10 parameter SP model was obtained. The fitted SP model and
the prediction bounds for different charge and discharge rates are
shown in Fig. 3a and b, respectively. In order to check the validity
of the values of the active surface areas obtained by the parameter
estimation, the active material volume fractions in the electrodes
are calculated as follows:

g = RiSi
T3y
The projected areas for the positive and negative electrodes are

0.0213 and 0.0226 m2, respectively. Since the thicknesses are 53
and 72 pm for the positive and negative electrodes respectively,

~4.656 + 88.66950C2 — 401.119S0C; + 342.90950CE — 462.471S0CS + 433.43450C}°

Itis assumed that the anode and cathode SOCs vary linearly with
the cell SOC as already mentioned. Fig. 1 in [29] was used to obtain
the following linear functions:

SOC, = 0.7950C,p + 0.01
SOC, = 0.97 — 0.51S0C,q

9.1.1. SP model
The SP model includes the following 10 parameters:

b= {DS,Tla Dsp, Sn, Sp, kn,kp»xo x0 0

0
n,avg,ch’ “n,avg,dch’ Xp,avg,ch’ Xp,avg,dch}

The diffusion term in the model can be removed when the diffu-
sion coefficient becomes large. As a result, §; in the t value equation
is set to the upper bound (10~> m2s~1) used in the optimization.
The active surface area (S;) is also required to be a large number
for elimination in the model. However, the upper bound for this
parameter is limited to the theoretical value that cannot be consid-
ered as the value for §;. Thus, the t value is not defined for the S;.
In order to eliminate the kinetic parameters (k;) in the model, the
expression in the natural logarithm of the overpotential equation
is needed to be one. This occurred when the k; limit to the infin-
ity, which means there is no reaction resistance for intercalation
or deintercalation of Li* ions in the electrodes. Thus, B; needs to be
a large number. The upper bound (10-1° m25 mol~0>s~1) used in
the optimization for the k; is considered as §;. The §; values for the
initial SOCs are zero as these parameters are linear in the model.
Table 2 presents the objective function improvement by using the
optimization algorithm. The genetic algorithm greatly improved
the objective function after the trust region method as shown in
Table 2. The parameters’ values and the corresponding t values
are given in Table 3. The table indicates that the cathode diffu-
sion coefficient and the anode rate constant do not affect the fitting
significantly. Thus, the regression was repeated for the model with
8 remaining parameters. In the new model, since there is no diffu-
sion resistance for the positive electrode, the surface concentration
is the same as the average concentration and the negative electrode
potential is equal to the open circuit potential because there is no
reaction resistance:

Xp,surf :9 Xp,avg
¢n = Un(xn,surf)

—1+18.93350C2 — 79.53250C2 + 37.31150CE — 73.08350CE + 95.9650C10

the active material volume fractions were calculated as 0.558 for
the positive and 0.743 for the negative.

9.1.2. ECA model
The following 6 parameters were used in the ECA model to fit
the data:

{¢,Q R Ret,SOCS" .

SOCg,C?eu}

The value of B; for capacitance C is a large number (e.g. upper
bound of the optimization (10,000 F)) because as capacitance C
limits to the infinity, the corresponding term in the model can
be eliminated. For other parameters, ; is zero. The optimization
results are shown in Table 2. In this case, the geneticdid notimprove
the SSE after the trust region method. Table 4 presents the least
squares results including the parameters’ values and the t values.
The t value for resistance R lies within the region of acceptance
of the null hypothesis given by the t distribution at the 95% con-
fidence interval. This means that resistance R can be removed in
the model and as a result we need to repeat the least squares algo-
rithm for the model with remaining 5 parameters. The results are
given in Table 4. It can be seen that the t value of the interfacial
charge transfer resistance, R, is enhanced more with respect to
the other parameters when the resistance R is eliminated. Fig. 4a
and b illustrates the fitted ECA model and the prediction bounds
for the charge and discharge rates, respectively.

9.1.3. Comparison

Table 5 presents the statistical quantities resulting obtained by
fitting the USG data using the SP and the ECA models. Based on the
results in the table, it is obvious that the SP model predicts the USG
data much superior than the ECA model.

9.2. Quallion Gen 2.0 experimental data

One charge curve and one discharge curve both at 0.393 C-rate
(0.9825A) were selected among several charge/discharge cycles’
experimental data obtained from the natural graphite (Mag-10)/Li
half-cell, LiNig g Cog 15Alg.0502/Li half-cell. The rated capacity of the
cellis 2.5 Ah. The open circuit potentials versus the SOC of the active
material in the positive and negative electrodes have been reported
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Fig. 3. The fitted SP model with 8 parameters and the prediction bounds for USG data (a) charge and (b) discharge.

Table 4
Statistical results for the USG data fitting using the ECA model.

Parameter 6 Parameter model 5 Parameter model
Value t value Is parameter Value a NCI t value Is parameter

significantly significantly
affecting the affecting the
fitting? fitting?

C(F) 1795.6 -16.57 Yes 1793.8 +514.3 +0.2869 -31.278 Yes

Q(Ah) 0.49344 364.38 Yes 0.49344 +0.0026525 +0.0053757 364.6 Yes

R() 1.170e—8 3.727e-7 No - - - - -

Ree (S2) 0.27783 8.5218 Yes 0.2778 +0.012425 +0.044728  43.819 Yes

SOC e 0.037499 43.383 Yes 0.037503 +0.0016396 +0.043728 44.821 Yes

SOC pyydch 0.82258 370.92 Yes 0.82258 +0.0043451 +0.0052822 371.05 Yes

in [30]. The following linear functions for the anode and the cathode
SOCs variations with the cell SOC obtained based on Fig. 3 in [30]:

{

9.2.1. SP model

Table 6 lists the values of the parameters and the t values
obtained by fitting the Quallion data using the SP model with 10
parameters. The table indicates that the diffusion coefficients for

S0Cq
SOC,

0.738850C + 0.0252
—0.62 + 0.9650C,;

both electrodes and all initial SOCs do not influence the fitting
significantly. However, the correlation coefficient matrix for the
parameters states that the SOCs for each electrode are correlated
with the electrode diffusion coefficient as shown in Table 7. As a
result, we repeated the regression with 8 parameter model that
excludes the diffusion coefficients because their t values are less
than the others. Thus, the Li ion surface concentrations are assumed
to be equal to the average concentration for both electrodes. The
statistical results are presented in Table 6. Fig. 5a and b shows the
fitted SP model and the prediction bounds for charge and discharge
rates, respectively.

Table 5
Comparison of the SP model with the ECA model for fitting different data.
2
Data Model # of the parameters dof SSE R? AR? RMSE SPB z—} x? value
2
USG SP 8 2704 0.49625 0.99214 0.99212 0.013547 72.147 - -
ECA 5 2707 2.6536 0.95798 0.95792 0.031309 166.65 - -
Quallion SP 8 100 0.01414 0.99911 0.99905 0.011891 2.6431 - -
ECA 5 103 0.24647 0.98456 0.98396 0.048917 10.713 - -
ECA? 8 100 0.039934  0.9975 0.99732 0.019983 44325
P2D SP 9 231 0.01351 0.99864 0.99859 0.007647 3.6814 1.6582 344.05
ECA 5 235 0.61368 0.93808 0.93702 0.051102 24404 74.041 14210

2 ECA with quadratic R;.
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Fig. 4. The fitted ECA model with 5 parameters and the prediction bounds for the USG data (a) charge and (b) discharge.

Statistical results for the Quallion data fitting using the SP model.
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Parameter 10 Parameter model 8 Parameter model
Value t value [s parameter Value cl NCI t value Is parameter

significantly affecting significantly affecting
the fitting? the fitting?

D (m2s1) 3.7077e-11  -8.1e-9  No - - - - -

Dsp (m?s71) 9.999e-11 —2e-15 No - - - - -

Sy (m?) 0.77424 - - 0.77423 +0.0047632 +0.0061521 - -

Sp (m?) 2.2962 - - 2.2962 +0.034462 +0.015008 - -

kn (m?> mol~>s~1) 1.3572e—-10 —1.8e5 Yes 1.3567e—10 +1.3742e—-10 +1.0129 —1.4e5 Yes

kp (m%> mol—°s~1) 1.0191e-12 —7.2e7 Yes 1.0192e-12 +2.7152e-13 +0.2664 —7.3e7 Yes

Xg,avg ch 0.045253 7.2e—-6 No 0.045282 +0.0041508 +0.091666 21.165 Yes

X0 edeh 092108 1.5e-4  No 092105 +0.0056974  +£0.0061857 32039  Yes

X avg.ch 0.90801 1.7e-5  No 0.908 +0.010002 40011015 17991  Yes

xgqﬂvg.dch 0.42561 8e—6 No 0.42561 +0.0090567 +0.021279 93.015 Yes

Table 7
Correlation coefficient matrix for the Quallion data fitting using the SP model with 10 parameters.

Parameters Dsn Dsp Sn Sp kn kp X2 X, P X3¢ P

Dsn 1 0.32 —5.6e-7 2.4e-7 —1.6e-7 1.42e-7 1 -1 -0.32 0.32

Dsp 0.32 1 —1.3e-7 3.8e-8 —1.9e-8 4.2e-8 0.32 -0.32 -1 1

Su —56e-7  —13e-7 1 —04 0.22 ~0.26 —44e—7 8.7¢-8 1.6e-7 —1.6e-7

S 2.4e-7 3.3e-8 04 1 —0.61 0.06 3.9e-8 —4.5e—8 —64e-8  52e-8

Kn —1.6e-7  —1.9e-8 0.22 -0.61 1 -0.29 4.1e-8 3.1e-8 3.1e-8 —1.5e-8

kp 1.4e-7 4.2e-8 -0.26 0.06 -0.29 1 1.3e-7 —1.2e-8 —1.3e-7 1.2e-7

X2 1 0.32 —4.4e-7 3.9¢-8 41e-8 1.3e-7 1 -1 -032 0.32

Py -1 -0.32 8.7e-8 —4.5e—8 3.1e-8 —~1.2e-8 -1 1 0.32 -0.32

X3¢ ~0.32 -1 1.6e—7 —6.4e-8 3.1e-8 —13e-7 ~0.32 0.32 1 -1

x4 0.32 1 —1.6e—7 52e-8 —1.5e-8 1.2e-7 0.32 ~0.32 -1 1

: X1 = Xg,avg,ch'

b X2 = Xg,avg,dch'

_ 0
¢ x3= Xp‘avg,ch'
d xy=x0

p,avg,dch”
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Fig. 5. The fitted SP model with 8 parameters and the prediction bounds for the Quallion data (a) 0.393 C-rate charge and (b) 0.393 C-rate discharge.

Table 8

Statistical results for the Quallion data fitting using the ECA model.

Parameter 6 Parameter model 5 Parameter model
Value tvalue Is parameter Value Cl NCI t value Is parameter

significantly affecting significantly affecting
the fitting? the fitting?

C(F) 128.43 -53.725 Yes 87.275 +155.58 +1.7826 -126.36 Yes

Q(Ah) 2.833 65.794 Yes 2.8369 +0.078185  +£0.02756 71.961 Yes

R(2) 0.031992 0.92098 No - - - - -

Rt (R2) 0.030438 0.92165 No 0.061486 +0.014926  +0.24276 8.1696 Yes

SOC,oyich 0.081913 5.5514 Yes 0.084271 +0.026832  +0.3184 6.2288 Yes

SOC,dch 0.84882 65.796 Yes 0.84765 +0.023361 +0.027559 71.963 Yes

9.2.2. ECA model

The parameters’ values with corresponding t values obtained by
fitting the Quallion data using the ECA model with 6 parameters are
listed in Table 8. Although the t values for both resistances R and R
verify the null hypothesis, the correlation coefficient matrix shows
a correlation between them. Thus, the model that excludes only
resistance R is used to fit the data. The parameters values together
with confidence interval and t values are given in Table 8. The fitted
ECA model and the prediction bounds for the charge and discharge
rates are depicted in Fig. 6a and b, respectively.

9.2.3. Comparison

The comparison between the SP and the ECA models are given in
Table 5 thatindicates that the SP model goodness of the fit surpasses
the fit for the ECA model.

9.3. Pseudo two dimensional (P2D) model data

In order to accomplish the F and x? statistical tests for the SP
and the ECA models, a zero mean Gaussian noise with the speci-
fied standard deviation (e.g. 0.01) is added to the data obtained by
running the rigorous P2D model in COMSOL 3.5a environment [31]
under the four different charge/discharge rates, 0.1,0.25,0.5 and 1.0
C-rate. Three replicates were generated at each independent vari-
able point. The same chemistry as the USG cell but with different
dimensions was used and the cell rated capacity was 1.656 Ah.

9.3.1. SP model

Table 9 lists the values of the parameters and the t values
obtained by fitting the P2D data using the SP model with 10 param-
eters. The table indicates that the diffusion coefficients for the
positive electrodes do not affect the fitting significantly. Thus, the
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Fig. 6. The fitted ECA model with 5 parameters and the prediction bounds for the Quallion data (a) 0.393 C-rate charge and (b) 0.393 C-rate discharge.
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Table 9
Statistical results for the P2D data fitting using the SP model.

Parameter 10 Parameter model 9 Parameter model
Value tvalue Is parameter Value (e} NCI t value Is parameter

significantly significantly
affecting the affecting the
fitting? fitting?

Dsp (m?s71) 5.5529e-14 —2.9e5 Yes 5.5529e—-14 (5.5e—14)? +6.767e-16 +0.012186 -29e5 Yes

Dsp (m?s71) le-10 —2e—-16  No —(le-11)? - - - -

Sp (m?) 0.68396 - - 0.68395 (0.78794)? +0.010436 +0.015258 - -

Sp (m?) 1.131 - - 1.131 (1.1442)2 +0.010912 +0.0096481 - -

kn (m?> mol=>s~1) 1.1067e-11 —1.4e7 Yes 1.1068e—11 (1.764e—11)*  +1.3737e-12 +0.12412 —1.4e7 Yes

kp (m?>> mol—°s~1)  4.2239%e-11 -9.24e5  Yes 4.219e—-11(6.667e—11)? +1.7664e—11 +0.41867 —1.1e6  Yes

Xg,avg,ch 0.070546 11.614 Yes 0.070486 (0.05)2 +0.011504 +0.1632 11.901 Yes

xgiavg’dch 0.82842 124.79 Yes 0.82845 (0.756)2 +0.012442 +0.015018 131.04  Yes

X?Lavg_ch 0.97272 528.63 Yes 0.9727 (0.95)* +0.0033922 +0.0034874 564.39  Yes

xg,uvg.dch 0.46384 536.91 Yes 0.46384 (0.465)? +0.0011285 +0.0024329 808.09  Yes

4 P2D model parameters.

regression was repeated with 9 parameter model excluding the
positive electrode’s diffusion coefficient. Table 9 and Fig. 7a and b
present the results (only the data for 1.0 C-rate (1.656 A) charge and
discharge) obtained by fitting the P2D data using the SP model with
9 parameters. The genetic algorithm, also, in this case improved
the objective function significantly after the trust region method
as shown in Table 2. The input parameters of the P2D model are
also given in Table 9 that indicates the parameters of the P2D and
the SP models are in the same order of magnitude.

9.3.2. ECA model

The parameter estimation results obtained by fitting the P2D
data using the ECA model with 6 parameters are listed in Table 10.
Although the t values for both resistances R and R verify the
null hypothesis, the correlation coefficient matrix shows a correla-
tion between them. Based on the model equations, we decided to
exclude resistance R since the resistance R is in the two terms of
the model while resistance R is only in one term of the equation.
The remaining 5 parameters’ values together with their confidence
intervals and t values are given in Table 10. The improvement of
the objective function is presented in Table 2. The fitted ECA model
and the prediction bounds for only 1.0 C-rate charge and discharge
are depicted in Fig. 8a and b.

9.4. Comparison
Table 5 compared the SP and the ECA models for fitting the

P2D data. At the 95% confidence interval, the values for Fgs54(dofi,
dof,) and X£210f1 o5 for the SP model are calculated as 1.2009 and

a

Veell(V)

36 © P2DData

— SP Model

== =Prediction Bounds
I 1

35
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267.46 respectively using the Matlab® Statistics Toolbox and for
the ECA model, the Fysy4(dofi, dof,) and Xﬁoﬁ o959 Values are 271.76

and 1.1997 respectively. The last two columns of the table are the
ratio of the model and the experimental variances and x2 values
for each model. The data contradict the goodness of both models,
since the ratios of the variances and the x2 values are more than
the corresponding distribution values. However, the values for the
SP model are much less than the values for the ECA model. The
other data in the table also verify the ascendancy of the goodness
of the fit for the SP model with respect to the ECA model. The com-
putation times to evaluate the voltages at different rates for both
models are about 0.001 sec on a Dell Precision T7500, with 2 Quad
Core 2.53 GHz Zenon Processors CPUs and 12.285 GB of RAM.

10. ECA model with quadratic R,

In order to compare the ECA model with the same number of
parameters as the SP model, it was assumed that the interfacial
charge transfer resistance, R, is a linear function of the cell SOC as
follows [17]:

R = r§h + r{"SOC,qy + r$hSOC2,,

RAh = rdeh 4 rdchSOCcqy + r§SOC,

Thus, the following 10 parameters are required to be estimated:

{C, Q, réh, r%h’ r;h, r(c)lch, r;ich’ rgch’ SOCch

dch
0,cell’ SOCO,cell}

Note that the resistance R was excluded based on the previous
results. The parameters, t values and confidence intervals obtained
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Fig. 7. The fitted SP model with 9 parameters and the prediction bounds for the P2D data (a) 1.0 C-rate charge and (b) 1.0 C-rate discharge.
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Table 10
Statistical results for the P2D data fitting using the ECA model.

8461

Parameter 6 Parameter model 5 Parameter model
Value tvalue Is parameter Value (e} NCI t value Is parameter
significantly significantly
affecting the affecting the
fitting? fitting?
C(F) 21.045 -2201.4 Yes 2243 +9.6562 +0.43049 —2035.7 Yes
Q(Ah) 2.0764 122.54 Yes 2.086 +0.030784 +0.014757 133.5 Yes
R(2) 0.029635 1.2631 No - - - - -
Ret (R2) 0.010328 0.45509 No 0.038705 +0.0077621  +0.20054 9.8237 Yes
SOC, et 0.91685 123.19 Yes 0.91262 +0.013383 +0.014664 134.35 Yes
SOC,dch 0.037124 6.1923 Yes 0.041068 +0.010204 +0.24846 7.9294 Yes
a a2t - b
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Fig. 8. The fitted ECA model with 5 parameters and the prediction bounds for the P2D data (a) 1.0 C-rate charge and (b) 1.0 C-rate discharge.
Table 11

Statistical results for the Quallion data fitting using the ECA model with quadratic R..

Parameter 10 Parameter model 8 Parameter model
Value t value Is parameter Value Cl NCI t value Is parameter

significantly significantly
affecting the affecting the
fitting? fitting?

C(F) 75.467 —324.51 Yes 48.68 +38.864 +0.79835 -508 Yes

Q(Ah) 3.0363 191.01 Yes 3.0462 +0.031447 +0.010324 192.18 Yes

rg" () 0.10065 3.2704 Yes 0.1078 +0.035978 +0.33376 5.9443 Yes

réh 0.0010993 0.012323 No - - - - -

rsh -0.07627 -0.77127 No - - - - -

rdh () 0.21198 31.033 Yes 0.20728 +0.01439 +0.069423 28.578 Yes

rdeh -8.6635 -13.777 Yes -7.9307 +1.2142 +0.1531 -12.959 Yes

rdeh 10.594 13.18 Yes 9.7004 +1.678 +0.17298 11.469 Yes

SOC,ych 0.095094 5.0206 Yes 0.069774 +0.035081 +0.33376 3.946 Yes

SOCoyydch 0.7955 191.01 Yes 0.79291 +0.0081856 +0.069423 192.18 Yes

for Quallion data fitting are presented in Table 11 that indicates
that the linear and quadratic coefficients for the charge R.; does
not affect the fitting significantly. Thus, the charge R, was kept
constant for the subsequent estimation. The R linear coefficient at
discharge (r’i"d‘) makes the resistance take negative values at some
cell SOC. In this condition a small positive value (e.g. 1e—6) is used
for the resistance. Other statistical quantities are given in Table 5
that shows the