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a  b  s  t  r  a  c  t

The  physics-based  single  particle  (SP)  model  was  compared  to the  semi-empirical  equivalent  circuit
analog  (ECA)  model  to  predict  the  cell  voltage  under  constant  current  charge  and  discharge  for  different
sets of  Li-ion  cell data.  The  parameters  of  the  models  were  estimated  for each  set  of  data  using  nonlinear
least  squares  regression.  In  order  to  enhance  the  probability  of  finding  the  global  optima,  a  combination
of  the  trust  region  method  with  a genetic  algorithm  was  applied  to  minimize  the objective  function  (the

2
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sum  of  squared  residuals).  Several  statistical  quantities  such  as  sum  of  the  squared  errors,  adjusted  R ,
root mean  squared  error,  confidence  intervals  of  the parameters,  and  prediction  bounds  were  included
to compare  the  models.  A  significance  test  (t test)  on  the  parameters  and  the  analysis  of  the  variances  (F
and  �2 tests)  were  also  performed  to  discriminate  between  the  goodness  of  the  fit  obtained  from  the two
models.  The  statistical  results  indicate  that  the SP  model  superiorly  predicts  all sets  of  data  compared  to
the  ECA  model,  while  the  computation  times  of  both  models  are  on  the  same  order  of  magnitude.
. Introduction

Today several models for Li-ion cells are available. Most of these
odels are generally categorized into two main groups, physics-

ased and empirical. Physics-based models consider the physical
henomena which occur in batteries including the material and
harge transfer processes, ionic conduction, solid phase diffusion,
tc. Most of these models are sophisticated in nature and time con-
uming to solve [1–5]. However, some efforts have been made to
implify the complexity of the physics-based models and reduce
he computation time. For example the active material concentra-
ion within the solid phase can be approximated by the second
egree polynomial [6–8]. Another simplification can be obtained
y using the SP model that represents each electrode as a single
pherical particle and ignores the solution phase concentration and
otential [9,10].  S. Santhanagopalan et al. compared the two differ-
nt physics based models; the SP and the rigorous porous electrode
odels [11]. The parameters of each model were estimated and the
tatistical F-test was performed to discriminate between the mod-
ls. A review of the physics-based models comprising the rigorous
seudo two dimensional (P2D), the SP and the porous electrode
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models with the polynomial approximation, was presented by S.
Santhanagopalan et al. [12]. The second group of the models for Li-
ion cell simulation is empirical or semi-empirical at best [13–15].
The majority of these models rely on the capacitor/resistor net-
works that are generally simple and describe the physical processes
as being capacitive or resistive in nature. The original simplified cir-
cuit was adopted from Ong and Newman [16] by incorporating the
double-layer capacitance into the model. M.W.  Verbrugge and R.S.
Conell implemented an equivalent circuit model for electrochemi-
cal and thermal characterization of a nickel metal hydride traction
battery [17]. Model parameters were estimated by comparing the
average cell voltage and the temperature for different charge and
discharge rates. There have been some works that applied the cir-
cuit analog approach for lead acid, nickel metal hydride, Li-ion
batteries and activated-carbon capacitors in adaptive manner to
predict the state of charge (SOC), state of health (SOH) and power
capability [18–20].  L. Gao et al. developed a model for Li-ion bat-
teries that relies on an equivalent circuit accounting for rate and
temperature dependence of the capacity, thermal dependence of
the equilibrium potential and transient response [21]. Although use
of manufacturers’ data allows the ECA model to have good accuracy,
it deviates from the experimental data at low temperature and at
high discharge rates. A realistic simulation of a lithium battery pack
was  performed by M.  Dubarry et al. [22] using an equivalent cir-

cuit approach for modeling of each single cell’s performance. They
showed that an accurate battery pack simulation can be achieved,
if the cell-to-cell variations were taken into account. More details
about the ECA model can be found in A.J. Bard and L.R. Faulkner

dx.doi.org/10.1016/j.jpowsour.2011.06.007
http://www.sciencedirect.com/science/journal/03787753
http://www.elsevier.com/locate/jpowsour
mailto:white@cec.sc.edu
dx.doi.org/10.1016/j.jpowsour.2011.06.007
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Nomenclature

aii diagonal elements of the matrix A defined in Eq. (25)
AR2 adjusted R-square
C capacitance [F]
CI confidence intervals of the parameters
ce electrolyte concentration [mol m−3]
ci,max maximum solid phase concentration for each elec-

trode (i = p,n) [mol m−3]
dof degree of freedom
Ds,i solid phase diffusion coefficient of Li+ or each elec-

trode(i  = p,n) [m2 s−1]
f the inverse of the F cumulative distribution function
F Faraday’s constant [C mol−1]
H0 null hypothesis
HA alternative hypothesis
Iapp applied current [C s−1]
J Jacobian matrix
Ji current density at the surface of the spherical parti-

cle for each particle in electrode (i = p,n) [A m−2]
ki rate constant for each electrode (i = p,n)

[m2.5 mol−0.5 s−1]
M a large number
NCI normalized confidence intervals of the parameters
nj number of data points for each dependent variable

j
nnr number of points of independent variable
nP number of parameters
nT total number of data points
Q columbic capacity of the cell [Ah]
PBs prediction bounds for the fitted curves
R cell resistance [�]
R2 R-squared
Rct interfacial charge transfer resistance [�]
Rg gas constant [J mol−1 K−1]
Ri radius particle for each electrode (i = p,n) [m]
rij elements of the correlation coefficient matrix
RMSE root mean squared error
s2 approximated value for the variance
Si electroactive surface area for each electrode (i = p,n)

[m2]
SOCi state of charge for each electrode (i = p,n)
SOCcell cell state of charge
SOCch

0,cell
initial state of charge for charge

SOCdch
0,cell

initial state of charge for discharge
SPB sum of the absolute residuals between the predic-

tion bound and the fitted model
SSE sum of squared errors
SST total sum of squares
t time [s]
T temperature [K]
U�

i
open circuit potentials for each electrode (i = p,n) [V]

V(bi) variance of parameter bi
Vcell cell voltage [V]
Vi electrode volume [m3]
Vo open circuit potentials for the cell [V]
v number of dependent variables
x  predictor value defined in Eq. (31)
xi,avg ratio of the solid average concentration to the maxi-

mum  solid concentration for each electrode (i = p,n)
xi,surf ratio of the solid surface concentration to the maxi-

mum solid concentration for each electrode (i = p,n)
x0

i,avg,ch
initial dimensionless average concentration for
charge for each electrode (i = p,n)

x0
i,avg,dch

initial dimensionless average concentration for dis-
charge for each

y model prediction
y* observed data
ȳ mean value of the fitted responses
˛a,i cathodic transfer coefficient
˛c,i anodic transfer coefficient
ˇi true value of the parameter
�i overpotentials for the lithium ion intercalation reac-

tion for each electrode (i = p,n) [V]
�i potential reaction for each electrode (i = p,n) [V]
εi active material volume fraction in the electrode

(i = p,n)

� gamma  function

[23] and M.W.  Verbrugge [24] books. None of the above works
have compared the physics-based models to the empirical or semi-
empirical models to investigate which models more accurately
predict experimental data. In this paper, a comparison of the SP
model [12] as a physics based approach and a simple ECA model
[15] as a semi-empirical model was implemented by predicting
the charge and discharge voltages at different rates for three sets of
data. The nonlinear least squares method was applied to estimate
the parameters of the models by using the Matlab® Curve Fitting
and Global Optimization toolboxes [23]. Several statistical quanti-
ties and tests are presented in order to discriminate between the
SP and ECA models.

2. Single particle model

A schematic of a lithium-ion cell represented by the SP model is
depicted in Fig. 1 with an individual spherical particle representing
each electrode as the current being passed through the electrode is
distributed uniformly over all of the particles in the electrode. The
main assumptions of the model are as follows [12]:

(1) The concentration of the electrolyte is constant and uniform for
all time across the cell sandwich (cathode, separator, anode).

(2) The potential in the solution phase is constant and uniform for

all time across the cell.

(3) Positive and negative electrode potentials depend on time only.
(4) There is no side reaction in the cell.

Fig. 1. A schematic of a lithium-ion cell represented by the SP model [11].
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By applying a volume average technique, Fick’s second law (par-
ial differential equation), is simplified to predict the lithium ions
oncentration in a spherical particle. This form contains an ordi-
ary differential equation and algebraic constraint equation (DAE)
ith the variables xi,avg and xi,surf (i = p,n) for each of the electrodes

ogether with their initial conditions as follows:

dxi,avg

dt
= −3Ji

FRici,max
(1)

i,surf − xi,avg = −JiRi

5FDs,ici,max
(2)

i = Iapp

Si
(3)

here xi,avg is the ratio of the solid average concentration to the
aximum solid concentration for each electrode (ci,max), xi,surf is

he ratio of the solid surface concentration to the maximum solid
oncentration which is equal to the state of charge (SOCi) for each
lectrode.

The Butler-Volmer kinetic expression is used to predict the rates
f the lithium ion deintercalation and intercalation reactions for
ach electrode:

Ji
F

= ki(ci,max − xi,surf ci,max)0.5(xi,surf ci,max)0.5c0.5
e

[
exp

(
˛a,iF

RgT
�i

)

− exp

(
−˛c,iF

RgT
�i

)]
(4)

The overpotentials for the lithium ion intercalation reaction are:

i = �i − U�
i (5)

The cell voltage is obtained by Eq. (6):

cell = �p − �n (6)

Since the charge and discharge data were obtained at con-
tant current, the model does not include the side reaction,
nd the cathodic and anodic transfer coefficients are the same
˛a,i = ˛c,i =  ̨ = 0.5), the system of differential algebraic equations
DAEs) for the SP model can be solved analytically. The analytic
olution of the differential equation for the average concentration
s as follows:

i,avg = −3Ji
RiFci,max

t + x0
i,avg (7)

Surface concentration is obtained:

i,surf = xi,avg − JiRi

5FDs,ici,max
(8)

There are two analytic solutions for the overpotential from the
utler-Volmer equation:

i =
RgT

F˛
ln

(
Ji ± (−4ceF2c2

i,maxk2
i
x2 + 4ceF2c2

i,maxk2
i
xi,surf + J2

i
)
0.5

2Fc0.5
e ki(ci,maxxi,surf )0.5(ci,max − ci,maxxi,surf )0.5

)
(9)

here only the positive sign yields the real value (physically mean-
ngful). Finally, the electrode potentials can be evaluated by adding
he open circuit potentials to the overpotential obtained by Eq. (9):

i = �i + U�
i (xi,surf ) (10)

The following 10 parameters of the SP model were selected to

t the data:

 =
{

Ds,n, Ds,p, Sn, Sp, kn, kp, x0
n,avg,ch, x0

n,avg,dch, x0
p,avg,ch, x0

p,avg,dch

}
(11)
 Sources 196 (2011) 8450– 8462

The values of the other parameters of the SP model for different
cells are given in Table 1.

3. Equivalent circuit analog model

Fig. 2 shows the schematic for an equivalent circuit that repre-
sents the Li-ion cell [24].

The single equation which relates the cell current and the volt-
age takes the following form:

R
dIapp

dt
+ 1

C

(
1 + R

Rct

)
Iapp = d (Vcell − Vo)

dt
+ 1

RctC
(Vcell − Vo) (12)

The detailed derivation is provided in [17]. Since the charge and
discharge data were obtained at constant current, the differential
equation for the voltage can be written as:

d (Vcell − Vo)
dt

= 1
C

(
1 + R

Rct

)
Iapp − 1

RctC
(Vcell − Vo) (13)

where Vo (open circuit potential) is a function of the state of charge
for the cell (SOCcell).

The solution to the first order differential equation (Eq. (13)) was
given in [17]:

Vcell = Vo + IR + Q

C
exp
( −t

RctC

)
+ IappRct

(
1 − exp

( −t

RctC

))
(14)

The SOCcell is changed with time as follows:

SOCcell = SOC0,cell + Iapp

3600Q
t (15)

where SOC0,cell is the initial SOC for the cell. Note that the current
is positive while charging the cell and negative when the cell is
discharged. The open circuit potential, Vo, for the cell is calculated
as the difference of the open circuit potentials for the electrodes:

Vo = U�
p

(
SOCp

)
− U�

n (SOCn) (16)

In order to evaluate the open circuit potentials for the elec-
trodes, the state of charge of the cell must be correlated to the SOC
of each electrode. The values of electrode SOCs are known at the
fully charged state, i.e. SOCcell = 1.0, and the fully discharged state,
i.e. SOCcell = 0.0. Thus, the SOC for each electrode at a particular cell
SOC can be determined by using a linear interpolation.

The following 6 parameters of the ECA model were considered
to be estimated to fit the data:

b =
{

C, Q, R, Rct, SOCch
0,cell, SOCdch

0,cell

}
where SOCch

0,cell
, SOCdch

0,cell
are the initial cell SOC for charge and dis-

charge, respectively.

4. Parameter estimation

Matlab® Curve Fitting and Global Optimization toolboxes [25]
were used to estimate the parameters of the SP and the ECA models
using the nonlinear least squares method. To compare the models
statistically, the following are presented for each model:

• Sum of squares due to error (SSE)
• R-square (R2), adjusted R-square (AR2), root mean squared error

(RMSE), confidence intervals of the Parameters (CI)
• Normalized confidence intervals of the parameters (NCI)
• Prediction bounds for the fitted curves (PBs)
• Sum of the absolute residuals between the prediction bound and

the fitted model (SPB)
Also the statistical t-test was performed to show the significance
of the parameters of the models and in order to test the adequacy
of the models, the F-test and the �2-test are presented.
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Table 1
SP model constant parameters in parameter estimation for different cells.

Parameters USG Quallion P2D

Value Unit Value Unit Value Unit

cp,max 51,555 mol  m−3 50,991 mol  m−3 51,555 mol m−3

cn,max 30,555 mol  m−3 30,555 mol  m−3 30,555 mol m−3

ce 1000 mol m−3 1000 mol m−3 1000 mol m−3

Rp 1e−5 m 5e−6 m 8.5e−6 m
Rn 2.5e−5 m 1.25e−5 m 12.5e−5 m
˛a,i 0.5 – 0.5 – 0.5 –
˛c,i 0.5 – 0.5 – 0.5 –

98.15
.3143
6,487

5

e
t

S

T  298.15 K 2
R 8.3143 J mol−1 K−1 8
F 96,487 C mol−1 9

. Nonlinear least squares

Because the SP and the ECA models are nonlinear in their param-
ters, the nonlinear least squares method was applied to minimize
he SSE between the experiments and the model given by [26]:
SE =
v∑

j=1

nj∑
i=1

(y∗
ij − yij)

2 (17)

Fig. 2. Equivalent circuit for correlating 
 K 298.15 K
 J mol−1 K−1 8.3143 J mol−1 K−1

C mol−1 96,487 C mol−1

where v and nj are the number of dependent variables and the num-
ber of data points for each variable, respectively; and y∗

ij
, yij are

the observed response and the fitted response values, respectively.
The objective function, SSE, is minimized using the trust region
method (Curve Fitting toolbox) and the genetic algorithm (Global

Optimization toolbox) in the following procedure:

1. Initial guess, lower and upper bounds for the parameters are
selected.

the lithium-ion cell behavior [24].



8 Power

2

3

4

R

w

S

w
v
t
a
E
w

A

R

d

w
p

a

C

w

d
f

s

a
[

A

w

J

b
[

r

454 S.K. Rahimian et al. / Journal of 

. The trust region method tries to minimize the objective func-
tion using the initial guess. Note that the Levenberg-Marquardt
method does not handle the bound constraints.

. The resulting point from Step 2 is considered as one of the chil-
dren of the initial population in the genetic algorithm while the
other children are generated randomly in the feasible domain for
the parameters. Afterward, the genetic tried to find the param-
eters with less SSE.

. If the objective function is improved in Step 3 by a defined tol-
erance (εimp = 10−6), the optimal parameters obtained in Step 3
are picked as the initial guess for Step 2; otherwise terminate
the minimization algorithm and print the results.

R2 is expressed as [27]:

2 = 1 − SSE

SST
(18)

here SST, the total sum of squares, is defined as [27]:

ST =
nT∑
i=1

(
y∗

i − y
)2

(19)

here nT and y are total number of data points and the mean
alue of the fitted responses, respectively. Note that because all
he dependent variables are cell voltages, we define a unique R2 for
ll the curves. Since the number of parameters for the SP and the
CA are different, the AR2 and the RMSE are also presented in this
ork as follows [27]:

R2 = 1 − (nT − 1) SSE

(dof − 1) SST
(20)

MSE =
√

SSE

dof
(21)

of = nT − nP (22)

here dof and nP are the degree of freedom and the number of
arameters, respectively.

The 95% confidence interval for the parameter bi is constructed
s [26]:

Ii = ±t(1−0.05/2)s
√

aii (23)

here t(1−0.05/2) is a value of Student’s t-distribution with dof

egrees of freedom and 95% confidence, and s2, approximated value
or the variance, is given by [26]:

2 = SSE

dof
(24)

ii in Eq. (23) are the diagonal elements of the following matrix
26]:

 =

⎛
⎝ 	∑

j=1

JT
j Jj

⎞
⎠

−1

(25)

here J is the Jacobian matrix defined at each point as follows:

 = ∂SSE

∂bi
(26)

The elements of the correlation coefficient matrix are calculated
y Eq. (27) to show how the parameters of the models are correlated

26]:

ij = Cov(bi, bj)√
V(bi)V(bj)

(27)
 Sources 196 (2011) 8450– 8462

where Cov(bi, bj), V(bi) are the covariance of bi and bj and the vari-
ance of bi is obtained as follows:

Cov(bi, bj) = s2aij

V(bi) = s2aii
(28)

By substituting Eq. (28) in Eq. (27), the following is obtained:

rij = aij√
aiiajj

(29)

where aij is the (i,j) element of the matrix A defined in Eq. (25).
The higher the correlation between two  parameters, the closer the
absolute value of rij is to 1.0.

We  defined the normalized parameter confidence interval (NCI)
in this paper in order to compare the confidence interval for differ-
ent parameters and also for different models:

NCIi =
±t(1−0.05/2)s

√
aii

bi
(30)

The prediction upper and lower bounds (PBUL) for the fitted
curve and for all predictor values (x) are given by [27]:

PBUL = y ± fs
√

xaiixT (31)

where f is the inverse of the F cumulative distribution function. The
PBs together with the fitted curves for the SP and the ECA models
are presented. However, the sum of the absolute residuals between
the lower bounds (lower or upper bounds results in no difference)
and the fitted model is also calculated to compare the bounds of
the models quantitatively:

SPB =
v∑

j=1

nj∑
i=1

(
PBL − yij

)
(32)

6. t-test

A significant test (t-test) presented in [26] is to test the null
hypothesis that any one of the parameters might be equal to zero.
The null hypothesis can be stated as [26]:

H0 : ˇi = 0

and the alternative hypothesis as

HA : ˇi /= 0

This is true when the parameter appears in the model as the
parameter vanishes if the value is set to zero such as polynomial
coefficients. Thus, when the test verifies the null hypothesis, the
parameter can be removed from the model. However, this is not
the case when the parameter is the root of a denominator or the
root of a natural logarithm, etc. For the former, ˇi needs to be a
large number while for the latter ˇi is one. For example, consider
the following model with two parameters (b1, b2):

y = x

b1
+ ln (b2)

The null hypothesis can be stated as

H0 : ˇ1 = M, ˇ2 = 1

and the alternative hypothesis as
HA : ˇ1 /= M, ˇ2 /= 1

where M is a large number. As a result, when the null hypothesis is
accepted, the parameter can be eliminated in the model.



S.K. Rahimian et al. / Journal of Power Sources 196 (2011) 8450– 8462 8455

Table 2
Optimization results for fitting the USG and P2D data using the SP and the ECA models.

USG using the SP model USG using the ECA model P2D using the SP model P2D using the ECA model

Initial guess/method SSE Initial guess/method SSE Initial guess/method SSE Initial guess/method SSE

Initial guess 1060570 Initial guess 295.109 Initial guess 157617 Initial guess 485.126
Trust  region 959662 Trust region 2.6536 Trust region 155556 Trust region 0.70651
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Genetic 0.6043 Genetic 2.6536
Trust  region 0.4963 

Genetic 0.4963 

The t value is calculated for each parameter using the following
quation:

 = bi − ˇi

s
√

aii
(33)

If this value lies within the region of acceptance given by the t
istribution at the required confidence interval level, then the null
ypotheses is accepted.

. F-test

In order to test the adequacy of the fit of the SP and the ECA
odels, the F-test was performed [26]. The total sum of residuals

s the sum of the error due to the lack of fit and the experimental
rror. The variances of these errors are obtained using the following
quations:

s2
1 =

nnr∑
i=1

(yi − ȳ∗)2

dof1

s2
2 =

nnr∑
i=1

(y∗ − ȳ∗)2

dof2
dof1 = nnr − np

dof2 = nT − nnr

(34)

here ȳ∗ is the mean value of each group of repeated experiments,
nr is the number of points of independent variable (the total non
epeated points), and nT is the total number of points. The ratio of
he variances, s2

1/s2
2, has an F distribution with dof1 and dof2 degrees

f freedom. For a good fit, the following inequality must be true:
s2
1

s2
2

< F1−˛(dof1, dof2) (35)

able 3
tatistical results for the USG data fitting using the SP model.

Parameter 10 Parameter model 8 Param

Value t value Is parameter
significantly affecting
the fitting?

Value 

Ds,n (m2 s−1) 1.3863e−14 −27691 Yes 1.3862
Ds,p (m2 s−1) 9.9984e−11 −1.9e−6 No – 

Sn (m2) 0.14477 – – 0.1448
Sp (m2) 0.18868 – – 0.1886
kn (m2.5 mol−.5 s−1) 9.9991e−6 −2.3e−9 No – 

kp (m2.5 mol−.5 s−1) 4.7568e−12 −2.6e7 Yes 4.7585
x0

n,avg,ch
0.11119 7.1139 Yes 0.1113

x0
n,avg,dch

0.83869 29.497 Yes 0.8381
x0

p,avg,ch
0.99534 6794.1 Yes 0.9953

x0
p,avg,dch

0.5313 171.59 Yes 0.5312
Genetic 0.03437 Genetic 0.61433
Trust region 0.01351 Trust region 0.61368
Genetic 0.01351 Genetic 0.61368

F1−˛(dof1, dof2) value can be calculated by solving the following
equation:

F1−˛(dof1,dof2)∫
0

f (t, dof1, dof2)dt = 1 − ˛

f (t, dof1, dof2)= � ((dof1 + dof2)/2)
� (dof1/2)� (dof2/2)

(
dof1
dof2

) dof1
2 t(dof1−2)/2

[1 + (dof1/dof2)t](dof1+dof2)/2

(36)

where � is the gamma  function.

8. Chi-squared (�2) test

In order to show the goodness of the fit, the chi-squared (�2)
statistical test is also accomplished [28]. The quantity known as
chi-squared (�2) is calculated as follows:

�2 =
nnr∑
i=1

(yi − ȳ∗)
va∗

va∗ =
n∗∑

j=1

(y∗ − ȳ∗)2

(37)

This quantity has a �2 distribution with dof1 degrees of freedom
and to have a good fit, the following muse be satisfied:

�2 < �2
dof1,1−˛ (38)

where �2
dof1,1−˛

is obtained by solving the following equation:

∞∫
�2

f (�2)d�2 = 1 − ˛
dof1,1−˛

f  (�2) = e−�2/2(�2)
(dof1/2)−1

2dof1/2�
(

dof1
2

)
(39)

eter model

CI NCI t value Is parameter
significantly affecting
the fitting?

e−14 ±4.0258e−15 ±0.29042 −48678 Yes
– – – –

9 ±0.021376 ±0.14753 – –
7 ±0.0018607 ±0.0098621 – –

– – – –
e−12 ±1.9004e−13 ±0.039937 −1.03e8 Yes
6 ±0.015185 ±0.13636 14.244 Yes
4 ±0.053812 ±0.064204 30.491 Yes
4 ±0.00014166 ±0.00014232 13757 Yes
8 ±0.004497 ±0.0084645 231.11 Yes
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. Results and discussion

.1. USG Gen 1.0 experimental data

The experimental data consists of the cell voltage, current and
he temperature for several charge/discharge cycles of the lithium-
on pouch cell. The rated capacity of the cell is 341 mA  h. The active

aterials of the positive and negative electrodes are lithium cobalt
xide (LiCoO2) and mesocarbon microbead (MCMB) 2528, respec-
ively. The three first charge curves at 0.2 C-rate and three discharge
urves at different rates, 0.5, 0.686, and 1.029 C-rates were selected
o estimate the parameters of the SP and the ECA models. The anode
nd cathode open-circuit potentials as functions of the SOCs are
xpressed as [5]:

n(SOCn) = .7222 + .1387SOCn + .029SOC1/2
n − .0172

SOCn
+ .0019

SOC1.5
n

+ .2808e(0.9−15SOCn) − .7984e(0.4465SOCn−0.4108)

p(SOCp) = −4.656 + 88.669SOC2
p − 401.119SOC4

p + 342.909SOC6
p

−1 + 18.933SOC2
p − 79.532SOC4

p + 37.311SOC6
p −

It is assumed that the anode and cathode SOCs vary linearly with
he cell SOC as already mentioned. Fig. 1 in [29] was used to obtain
he following linear functions:

SOCa = 0.79SOCcell + 0.01
SOCc = 0.97 − 0.51SOCcell

.1.1. SP model
The SP model includes the following 10 parameters:

 =
{

Ds,n, Ds,p, Sn, Sp, kn, kp, x0
n,avg,ch, x0

n,avg,dch, x0
p,avg,ch, x0

p,avg,dch

}
The diffusion term in the model can be removed when the diffu-

ion coefficient becomes large. As a result, ˇi in the t value equation
s set to the upper bound (10−5 m2 s−1) used in the optimization.
he active surface area (Si) is also required to be a large number
or elimination in the model. However, the upper bound for this
arameter is limited to the theoretical value that cannot be consid-
red as the value for ˇi. Thus, the t value is not defined for the Si.
n order to eliminate the kinetic parameters (ki) in the model, the
xpression in the natural logarithm of the overpotential equation
s needed to be one. This occurred when the ki limit to the infin-
ty, which means there is no reaction resistance for intercalation
r deintercalation of Li+ ions in the electrodes. Thus, ˇi needs to be

 large number. The upper bound (10−10 m2.5 mol−0.5 s−1) used in
he optimization for the ki is considered as ˇi. The ˇi values for the
nitial SOCs are zero as these parameters are linear in the model.
able 2 presents the objective function improvement by using the
ptimization algorithm. The genetic algorithm greatly improved
he objective function after the trust region method as shown in
able 2. The parameters’ values and the corresponding t values
re given in Table 3. The table indicates that the cathode diffu-
ion coefficient and the anode rate constant do not affect the fitting
ignificantly. Thus, the regression was repeated for the model with

 remaining parameters. In the new model, since there is no diffu-
ion resistance for the positive electrode, the surface concentration
s the same as the average concentration and the negative electrode
otential is equal to the open circuit potential because there is no

eaction resistance:

xp,surf = xp,avg

�n = U�
n(xn,surf )
 Sources 196 (2011) 8450– 8462

2.471SOC8
p + 433.434SOC10

p

83SOC8
p + 95.96SOC10

p

The initial state of charge of the positive electrode returned
from the parameter estimation routine is larger than expected
(0.99 ≤ x0

p,avg,ch
≤ 1.0). The large value is likely due to the fact that

the SP model does not take into account the potential drop in the
electrolyte.

Table 3 consists of the parameters’ values, confidence intervals,
normalized confidence intervals, and t values. The same SSE for
the 10 parameter SP model was  obtained. The fitted SP model and
the prediction bounds for different charge and discharge rates are
shown in Fig. 3a and b, respectively. In order to check the validity
of the values of the active surface areas obtained by the parameter
estimation, the active material volume fractions in the electrodes
are calculated as follows:

εi = RiSi

3Vi

The projected areas for the positive and negative electrodes are
0.0213 and 0.0226 m2, respectively. Since the thicknesses are 53
and 72 �m for the positive and negative electrodes respectively,

the active material volume fractions were calculated as 0.558 for
the positive and 0.743 for the negative.

9.1.2. ECA model
The following 6 parameters were used in the ECA model to fit

the data:{
C, Q, R, Rct, SOCch

0,cell, SOCdch
0,cell

}
The value of ˇi for capacitance C is a large number (e.g. upper

bound of the optimization (10,000 F)) because as capacitance C
limits to the infinity, the corresponding term in the model can
be eliminated. For other parameters, ˇi is zero. The optimization
results are shown in Table 2. In this case, the genetic did not improve
the SSE after the trust region method. Table 4 presents the least
squares results including the parameters’ values and the t values.
The t value for resistance R lies within the region of acceptance
of the null hypothesis given by the t distribution at the 95% con-
fidence interval. This means that resistance R can be removed in
the model and as a result we need to repeat the least squares algo-
rithm for the model with remaining 5 parameters. The results are
given in Table 4. It can be seen that the t value of the interfacial
charge transfer resistance, Rct, is enhanced more with respect to
the other parameters when the resistance R is eliminated. Fig. 4a
and b illustrates the fitted ECA model and the prediction bounds
for the charge and discharge rates, respectively.

9.1.3. Comparison
Table 5 presents the statistical quantities resulting obtained by

fitting the USG data using the SP and the ECA models. Based on the
results in the table, it is obvious that the SP model predicts the USG
data much superior than the ECA model.

9.2. Quallion Gen 2.0 experimental data

One charge curve and one discharge curve both at 0.393 C-rate
(0.9825 A) were selected among several charge/discharge cycles’

experimental data obtained from the natural graphite (Mag-10)/Li
half-cell, LiNi0.8Co0.15Al0.05O2/Li half-cell. The rated capacity of the
cell is 2.5 Ah. The open circuit potentials versus the SOC of the active
material in the positive and negative electrodes have been reported
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Fig. 3. The fitted SP model with 8 parameters and the prediction bounds for USG data (a) charge and (b) discharge.

Table 4
Statistical results for the USG data fitting using the ECA model.

Parameter 6 Parameter model 5 Parameter model

Value t value Is parameter
significantly
affecting the
fitting?

Value CI NCI t value Is parameter
significantly
affecting the
fitting?

C (F) 1795.6 −16.57 Yes 1793.8 ±514.3 ±0.2869 −31.278 Yes
Q  (Ah) 0.49344 364.38 Yes 0.49344 ±0.0026525 ±0.0053757 364.6 Yes
R  (�) 1.170e−8 3.727e−7 No – – – – –

0.27
0.03
0.82

i
S{

9

o
p

T
C

Rct (�)  0.27783 8.5218 Yes 

SOCcellch 0.037499 43.383 Yes 

SOCcelldch 0.82258 370.92 Yes 

n [30]. The following linear functions for the anode and the cathode
OCs variations with the cell SOC obtained based on Fig. 3 in [30]:

SOCa = 0.7388SOCcell + 0.0252
SOCc = −0.62 + 0.96SOCcell
.2.1. SP model
Table 6 lists the values of the parameters and the t values

btained by fitting the Quallion data using the SP model with 10
arameters. The table indicates that the diffusion coefficients for

able 5
omparison of the SP model with the ECA model for fitting different data.

Data Model # of the parameters dof SSE 

USG SP 8 2704 0.49625 

ECA 5  2707 2.6536 

Quallion SP  8 100 0.01414 

ECA  5 103 0.24647 

ECAa 8 100 0.039934 

P2D SP 9  231 0.01351 

ECA  5 235 0.61368 

a ECA with quadratic Rct .
78 ±0.012425 ±0.044728 43.819 Yes
7503 ±0.0016396 ±0.043728 44.821 Yes
258 ±0.0043451 ±0.0052822 371.05 Yes

both electrodes and all initial SOCs do not influence the fitting
significantly. However, the correlation coefficient matrix for the
parameters states that the SOCs for each electrode are correlated
with the electrode diffusion coefficient as shown in Table 7. As a
result, we repeated the regression with 8 parameter model that
excludes the diffusion coefficients because their t values are less
than the others. Thus, the Li ion surface concentrations are assumed

to be equal to the average concentration for both electrodes. The
statistical results are presented in Table 6. Fig. 5a and b shows the
fitted SP model and the prediction bounds for charge and discharge
rates, respectively.

R2 AR2 RMSE SPB
s2
1

s2
2

�2 value

0.99214 0.99212 0.013547 72.147 – –
0.95798 0.95792 0.031309 166.65 – –

0.99911 0.99905 0.011891 2.6431 – –
0.98456 0.98396 0.048917 10.713 – –
0.9975 0.99732 0.019983 4.4325

0.99864 0.99859 0.007647 3.6814 1.6582 344.05
0.93808 0.93702 0.051102 24.404 74.041 14210
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Fig. 4. The fitted ECA model with 5 parameters and the prediction bounds for the USG data (a) charge and (b) discharge.

Table  6
Statistical results for the Quallion data fitting using the SP model.

Parameter 10 Parameter model 8 Parameter model

Value t value Is parameter
significantly affecting
the fitting?

Value CI NCI t value Is parameter
significantly affecting
the fitting?

Ds,n (m2 s−1) 3.7077e−11 −8.1e−9 No – – – – –
Ds,p (m2 s−1) 9.999e−11 −2e−15 No – – – – –
Sn (m2) 0.77424 – – 0.77423 ±0.0047632 ±0.0061521 – –
Sp (m2) 2.2962 – – 2.2962 ±0.034462 ±0.015008 – –
kn (m2.5 mol−.5 s−1) 1.3572e−10 −1.8e5 Yes 1.3567e−10 ±1.3742e−10 ±1.0129 −1.4e5 Yes
kp (m2.5 mol−.5 s−1) 1.0191e−12 −7.2e7 Yes 1.0192e−12 ±2.7152e−13 ±0.2664 −7.3e7 Yes
x0

n,avg,ch
0.045253 7.2e−6 No 0.045282 ±0.0041508 ±0.091666 21.165 Yes

x0
n,avg,dch

0.92108 1.5e−4 No 0.92105 ±0.0056974 ±0.0061857 320.39 Yes
x0

p,avg,ch
0.90801 1.7e−5 No 0.908 ±0.010002 ±0.011015 179.91 Yes

x0
p,avg,dch

0.42561 8e−6  No 0.42561 ±0.0090567 ±0.021279 93.015 Yes

Table 7
Correlation coefficient matrix for the Quallion data fitting using the SP model with 10 parameters.

Parameters Ds,n Ds,p Sn Sp kn kp x1
a x2

b x3
c x4

d

Ds,n 1 0.32 −5.6e−7 2.4e−7 −1.6e−7 1.42e−7 1 −1 −0.32 0.32
Ds,p 0.32 1 −1.3e−7 3.8e−8 −1.9e−8 4.2e−8 0.32 −0.32 −1 1
Sn −5.6e−7 −1.3e−7 1 −0.4 0.22 −0.26 −4.4e−7 8.7e−8 1.6e−7 −1.6e−7
Sp 2.4e−7 3.3e−8 −0.4 1 −0.61 0.06 3.9e−8 −4.5e−8 −6.4e−8 5.2e−8
kn −1.6e−7 −1.9e−8 0.22 −0.61 1 −0.29 4.1e−8 3.1e−8 3.1e−8 −1.5e−8
kp 1.4e−7 4.2e−8 −0.26 0.06 −0.29 1 1.3e−7 −1.2e−8 −1.3e−7 1.2e−7
x1

a 1 0.32 −4.4e−7 3.9e−8 4.1e−8 1.3e−7 1 −1 −0.32 0.32
x2

b −1 −0.32 8.7e−8 −4.5e−8 3.1e−8 −1.2e−8 −1 1 0.32 −0.32
x3

c −0.32 −1 1.6e−7 −6.4e−8 3.1e−8 −1.3e−7 −0.32 0.32 1 −1
x4

d 0.32 1 −1.6e−7 5.2e−8 −1.5e−8 1.2e−7 0.32 −0.32 −1 1

a x1 = x0
n,avg,ch

.
b x2 = x0

n,avg,dch
.

c x3 = x0
p,avg,ch

.
d x4 = x0

p,avg,dch
.
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Fig. 5. The fitted SP model with 8 parameters and the prediction bounds for the Quallion data (a) 0.393 C-rate charge and (b) 0.393 C-rate discharge.

Table  8
Statistical results for the Quallion data fitting using the ECA model.

Parameter 6 Parameter model 5 Parameter model

Value t value Is parameter
significantly affecting
the fitting?

Value CI NCI t value Is parameter
significantly affecting
the fitting?

C (F) 128.43 −53.725 Yes 87.275 ±155.58 ±1.7826 −126.36 Yes
Q  (Ah) 2.833 65.794 Yes 2.8369 ±0.078185 ±0.02756 71.961 Yes
R  (�) 0.031992 0.92098 No – – – – –
Rct (�)  0.030438 0.92165 No 0.061486 ±0.014926 ±0.24276 8.1696 Yes

0.0
0.8

9

fi
l
v
a
r
w
E
r

9

T
t

SOCcellch 0.081913 5.5514 Yes 

SOCcelldch 0.84882 65.796 Yes

.2.2. ECA model
The parameters’ values with corresponding t values obtained by

tting the Quallion data using the ECA model with 6 parameters are
isted in Table 8. Although the t values for both resistances R and Rct

erify the null hypothesis, the correlation coefficient matrix shows
 correlation between them. Thus, the model that excludes only
esistance R is used to fit the data. The parameters values together
ith confidence interval and t values are given in Table 8. The fitted

CA model and the prediction bounds for the charge and discharge
ates are depicted in Fig. 6a and b, respectively.
.2.3. Comparison
The comparison between the SP and the ECA models are given in

able 5 that indicates that the SP model goodness of the fit surpasses
he fit for the ECA model.

Fig. 6. The fitted ECA model with 5 parameters and the prediction bounds for 
84271 ±0.026832 ±0.3184 6.2288 Yes
4765 ±0.023361 ±0.027559 71.963 Yes

9.3. Pseudo two dimensional (P2D) model data

In order to accomplish the F and �2 statistical tests for the SP
and the ECA models, a zero mean Gaussian noise with the speci-
fied standard deviation (e.g. 0.01) is added to the data obtained by
running the rigorous P2D model in COMSOL 3.5a environment [31]
under the four different charge/discharge rates, 0.1, 0.25, 0.5 and 1.0
C-rate. Three replicates were generated at each independent vari-
able point. The same chemistry as the USG cell but with different
dimensions was used and the cell rated capacity was 1.656 Ah.

9.3.1. SP model

Table 9 lists the values of the parameters and the t values

obtained by fitting the P2D data using the SP model with 10 param-
eters. The table indicates that the diffusion coefficients for the
positive electrodes do not affect the fitting significantly. Thus, the

the Quallion data (a) 0.393 C-rate charge and (b) 0.393 C-rate discharge.
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Table 9
Statistical results for the P2D data fitting using the SP model.

Parameter 10 Parameter model 9 Parameter model

Value t value Is parameter
significantly
affecting the
fitting?

Value CI NCI t value Is parameter
significantly
affecting the
fitting?

Ds,n (m2 s−1) 5.5529e−14 −2.9e5 Yes 5.5529e−14 (5.5e−14)a ±6.767e−16 ±0.012186 −2.9e5 Yes
Ds,p (m2 s−1) 1e−10 −2e−16 No −(1e−11)a – – – –
Sn (m2) 0.68396 – – 0.68395 (0.78794)a ±0.010436 ±0.015258 – –
Sp (m2) 1.131 – – 1.131 (1.1442)a ±0.010912 ±0.0096481 – –
kn (m2.5 mol−.5 s−1) 1.1067e−11 −1.4e7 Yes 1.1068e−11 (1.764e−11)a ±1.3737e−12 ±0.12412 −1.4e7 Yes
kp (m2.5 mol−.5 s−1) 4.2239e−11 −9.24e5 Yes 4.219e−11 (6.667e−11)a ±1.7664e−11 ±0.41867 −1.1e6 Yes
x0

n,avg,ch
0.070546 11.614 Yes 0.070486 (0.05)a ±0.011504 ±0.1632 11.901 Yes

x0
n,avg,dch

0.82842 124.79 Yes 0.82845 (0.756)a ±0.012442 ±0.015018 131.04 Yes
x0 0.97272 528.63 Yes 0.9727 (0.95)a ±0.0033922 ±0.0034874 564.39 Yes

 (0.46
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p,avg,ch

x0
p,avg,dch

0.46384 536.91 Yes 0.46384

a P2D model parameters.

egression was repeated with 9 parameter model excluding the
ositive electrode’s diffusion coefficient. Table 9 and Fig. 7a and b
resent the results (only the data for 1.0 C-rate (1.656 A) charge and
ischarge) obtained by fitting the P2D data using the SP model with

 parameters. The genetic algorithm, also, in this case improved
he objective function significantly after the trust region method
s shown in Table 2. The input parameters of the P2D model are
lso given in Table 9 that indicates the parameters of the P2D and
he SP models are in the same order of magnitude.

.3.2. ECA model
The parameter estimation results obtained by fitting the P2D

ata using the ECA model with 6 parameters are listed in Table 10.
lthough the t values for both resistances R and Rct verify the
ull hypothesis, the correlation coefficient matrix shows a correla-
ion between them. Based on the model equations, we  decided to
xclude resistance R since the resistance Rct is in the two  terms of
he model while resistance R is only in one term of the equation.
he remaining 5 parameters’ values together with their confidence
ntervals and t values are given in Table 10.  The improvement of
he objective function is presented in Table 2. The fitted ECA model
nd the prediction bounds for only 1.0 C-rate charge and discharge
re depicted in Fig. 8a and b.

.4. Comparison
Table 5 compared the SP and the ECA models for fitting the
2D data. At the 95% confidence interval, the values for F95%(dof1,
of2) and �2

dof1,95% for the SP model are calculated as 1.2009 and

Fig. 7. The fitted SP model with 9 parameters and the prediction bounds
5)a ±0.0011285 ±0.0024329 808.09 Yes

267.46 respectively using the Matlab® Statistics Toolbox and for
the ECA model, the F95%(dof1, dof2) and �2

dof1,95% values are 271.76
and 1.1997 respectively. The last two  columns of the table are the
ratio of the model and the experimental variances and �2 values
for each model. The data contradict the goodness of both models,
since the ratios of the variances and the �2 values are more than
the corresponding distribution values. However, the values for the
SP model are much less than the values for the ECA model. The
other data in the table also verify the ascendancy of the goodness
of the fit for the SP model with respect to the ECA model. The com-
putation times to evaluate the voltages at different rates for both
models are about 0.001 sec on a Dell Precision T7500, with 2 Quad
Core 2.53 GHz Zenon Processors CPUs and 12.285 GB of RAM.

10. ECA model with quadratic Rct

In order to compare the ECA model with the same number of
parameters as the SP model, it was assumed that the interfacial
charge transfer resistance, Rct, is a linear function of the cell SOC as
follows [17]:

Rch
ct = rch

0 + rch
1 SOCcell + rch

2 SOC2
cell

Rdch
ct = rdch

0 + rdch
1 SOCcell + rdch

2 SOC2
cell

Thus, the following 10 parameters are required to be estimated:
{
C, Q, rch

0 , rch
1 , rch

2 , rdch
0 , rdch

1 , rdch
2 , SOCch

0,cell, SOCdch
0,cell

}
Note that the resistance R was  excluded based on the previous

results. The parameters, t values and confidence intervals obtained

 for the P2D data (a) 1.0 C-rate charge and (b) 1.0 C-rate discharge.
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Table 10
Statistical results for the P2D data fitting using the ECA model.

Parameter 6 Parameter model 5 Parameter model

Value t value Is parameter
significantly
affecting the
fitting?

Value CI NCI t value Is parameter
significantly
affecting the
fitting?

C (F) 21.045 −2201.4 Yes 22.43 ±9.6562 ±0.43049 −2035.7 Yes
Q  (Ah) 2.0764 122.54 Yes 2.086 ±0.030784 ±0.014757 133.5 Yes
R  (�) 0.029635 1.2631 No – – – – –
Rct (�)  0.010328 0.45509 No 0.038705 ±0.0077621 ±0.20054 9.8237 Yes
SOCcellch 0.91685 123.19 Yes 0.91262 ±0.013383 ±0.014664 134.35 Yes
SOCcelldch 0.037124 6.1923 Yes 0.041068 ±0.010204 ±0.24846 7.9294 Yes

Fig. 8. The fitted ECA model with 5 parameters and the prediction bounds for the P2D data (a) 1.0 C-rate charge and (b) 1.0 C-rate discharge.

Table  11
Statistical results for the Quallion data fitting using the ECA model with quadratic Rct .

Parameter 10 Parameter model 8 Parameter model

Value t value Is parameter
significantly
affecting the
fitting?

Value CI NCI t value Is parameter
significantly
affecting the
fitting?

C (F) 75.467 −324.51 Yes 48.68 ±38.864 ±0.79835 −508 Yes
Q  (Ah) 3.0363 191.01 Yes 3.0462 ±0.031447 ±0.010324 192.18 Yes
rch

0 (�) 0.10065 3.2704 Yes 0.1078 ±0.035978 ±0.33376 5.9443 Yes
rch

1 0.0010993 0.012323 No – – – – –
rch

2 −0.07627 −0.77127 No – – – – –
rdch

0 (�) 0.21198 31.033 Yes 0.20728 ±0.01439 ±0.069423 28.578 Yes
rdch

1 −8.6635 −13.777 Yes −7.9307 ±1.2142 ±0.1531 −12.959 Yes
004 

6977
9291
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n
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c
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1
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rdch
2 10.594 13.18 Yes 9.7

SOCcellch 0.095094 5.0206 Yes 0.0
SOCcelldch 0.7955 191.01 Yes 0.7

or Quallion data fitting are presented in Table 11 that indicates
hat the linear and quadratic coefficients for the charge Rct does
ot affect the fitting significantly. Thus, the charge Rct was kept
onstant for the subsequent estimation. The Rct linear coefficient at
ischarge (rdch

1 ) makes the resistance take negative values at some
ell SOC. In this condition a small positive value (e.g. 1e−6) is used
or the resistance. Other statistical quantities are given in Table 5
hat shows the improvement of the ECA model. However, the SP

odel is still superior to the ECA model.

1. Conclusion

The reliability of the physics-based SP model to predict the
oltage data under different constant current charges and dis-

harges has been compared to the semi-empirical ECA model. The
onlinear least squares approach was used to estimate the param-
ters of the models by minimizing the SSE between the model
rediction and the data. In order to enhance the probability of find-
±1.678 ±0.17298 11.469 Yes
4 ±0.035081 ±0.33376 3.946 Yes

 ±0.0081856 ±0.069423 192.18 Yes

ing the best fit, the genetic algorithm was  also implemented to
check the optimality of the solution obtained by the trust region
method. The statistical t-test was  accomplished to determine the
significant parameters of the models. For the SP model, the cath-
ode diffusion coefficient did not influence the fitting for all data
sets. The anode diffusion coefficient for the Quallion data and the
anode reaction rate constant for the USG data were not the sig-
nificant parameters. The resistance R had no strong effect of the
fitting for the ECA model for all data sets. Comparing the statis-
tical results demonstrated that the SP model fit all the data sets
more precisely (less SSE, RMSE, more R2, AR2) and more confi-
dently (tighter prediction bounds) than the ECA model. On other
hand, the SP model’s computation time to evaluate the voltages
is as the same order of magnitude as the ECA computation time.

Thus, the SP model is the superior candidate model rather than
the ECA model and it can be applied for the online estimation of
the SOC and the state of the health of the battery packs. However,
based on the assumptions of the SP model and semi-empiricalness
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f the ECA model, both models might be inaccurate at high rates
here the solution phase resistance cannot be ignored for the

P model, and more electrical components for the ECA would
e required. The other limitation of the present models is the

ncapability of prediction of the cell capacity fade. Thus, some
xtensions (more terms and/or parameters’ dependence on SOC
r time, etc.) to the current models are essential to overcome the
estrictions.
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